
DRES: Dynamic Range Encoding Scheme
for TCAM Coprocessors

Hao Che, Senior Member, IEEE, Zhijun Wang, Kai Zheng, Member, IEEE, and Bin Liu, Member, IEEE

Abstract—One of the most critical resource management issues in the use of ternary content-addressable memory (TCAM) for packet

classification/filtering is how to effectively support filtering rules with ranges, known as range matching. In this paper, the Dynamic

Range Encoding Scheme (DRES) is proposed to significantly improve the TCAM storage efficiency for range matching. Unlike the

existing range encoding schemes requiring additional hardware support, DRES uses the TCAM coprocessor itself to assist range

encoding. Hence, DRES can be readily programmed in a network processor using a TCAM coprocessor for packet classification. A

salient feature of DRES is its ability to allow a subset of ranges to be encoded and, hence, to have full control over the range code size.

This advantage allows DRES to exploit the TCAM structure to maximize the TCAM storage efficiency. DRES is a comprehensive

solution, including a dynamic range selection algorithm, a search key encoding scheme, a range encoding scheme, and a dynamic

encoded range update algorithm. Although the dynamic range selection algorithm running in the software allows optimal selection of

ranges to be encoded to fully utilize the TCAM storage, the dynamic encoded range update algorithm allows the TCAM database to be

updated lock free without interrupting the TCAM database lookup process. DRES is evaluated based on real-world databases and the

results show that DRES can reduce the TCAM storage expansion ratio from 6.20 to 1.23. The performance analysis of DRES based on

a probabilistic model demonstrates that DRES significantly improves the TCAM storage efficiency for a wide spectrum of range

distributions.

Index Terms—Packet classification, range matching, ternary CAM, network processor.

Ç

1 INTRODUCTION

PACKET classification has been recognized as a critical
data path function for high-speed packet forwarding in

a router. To keep up with multigigabit line rates, a high-
performance router needs to be able to classify a packet in a
few tens of nanoseconds. In the last few years, significant
research efforts have been made to design fast packet
classification algorithms for both Longest Prefix Matching
(LPM) and general policy/firewall filtering (PF) [2], [6], [9],
[10], [20], [21], [22], [24]. However, most of these algorithmic
approaches cannot provide deterministic lookup perfor-
mance matching multigigabit line rates.

An alternative approach, which has been gaining
popularity, is the use of a ternary content-addressable memory
(TCAM) coprocessor for fast packet classification. In
general, a TCAM coprocessor works as a look aside
processor for packet classification on behalf of a network
processing unit (NPU) or network processor. When a packet
is to be classified, an NPU generates a search key based on
the information extracted from the packet header and

passes it to the TCAM coprocessor for classification. A
TCAM coprocessor finds a matched rule in a small constant
number of clock cycles, offering the highest possible
lookup/matching performance [8]. Indeed, packet proces-
sing at a line rate of 10 gigabits per second (Gbps) using an
integrated NPU and TCAM coprocessor solution has been
reported [1].

However, despite its fast lookup performance, the
TCAM-based solution has its own shortcomings, including
high power consumption, large footprint, and high cost.
These shortcomings directly contribute to a critical issue for
packet classification using TCAM, namely, supporting rules
with ranges, or range matching. The difficulty lies in the fact
that multiple TCAM entries have to be allocated to
represent a range field. A rule that involves multiple range
fields will cause a multiplicative expansion of the rule
expressed in TCAM. Our statistical analysis of real-world
rule databases shows that the TCAM storage efficiency can
be as low as 16 percent due to the existence of a significant
number of rules with port ranges. The work in [2], [9], [13],
[19] also reported that today’s real-world PF tables involve
significant amounts of rules with ranges. Clearly, the
reduced TCAM memory efficiency due to range matching
makes TCAM power consumption, footprint, and cost even
more serious concerns.

A general approach to deal with range matching is to do
a range preprocessing/encoding by mapping ranges to a
short sequence of encoded bits, known as bitmapping. The
idea is to use a bit to represent a range in a field. Hence,
each rule can be translated to a sequence of encoded bits,
known as rule encoding. Accordingly, a search key based on
the information extracted from the packet header is
preprocessed to generate an encoded search key, called

902 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 7, JULY 2008

. H. Che is with the Department of Computer Science and Engineering,
University of Texas at Arlington, Arlington, TX 76019.
E-mail: hche@cse.uta.edu.

. Z. Wang is with the Department of Computing, Hong Kong Polytechnic
University, Hong Kong. E-mail: cszjwang@comp.polyu.edu.hk.

. K. Zheng is with the System Research Group, IBM China Resarch Lab,
Beijing, P.R. China. E-mail: zhengkai@cn.ibm.com.

. B. Liu is with the Department of Computer Science and Technology,
Tsinghua University, Beijing 10084, P.R. China.
E-mail: liub@tsinghua.edu.cn.

Manuscript received 17 Mar. 2006; revised 19 Feb. 2007; accepted 5 Oct.
2007; published online 17 Oct. 2007.
Recommended for acceptance by M. Gokhale.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0104-0306.
Digital Object Identifier no. 10.1109/TC.2007.70838.

0018-9340/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 13, 2009 at 03:00 from IEEE Xplore. Restrictions apply.

search key encoding. Then, the encoded search key is matched
against all the encoded rules to find the best matched rule.
Although the rule encoding can be done in the software, the
search key encoding is performed on a per-packet basis and
must be done in the hardware at wire speed. In addition to
algorithms for rule encoding and search key encoding, a
comprehensive range encoding scheme also needs to
provide two other important algorithms. First, it needs to
provide a range selection algorithm that selects the ranges to
be encoded to maximize the TCAM storage efficiency.
Second, it needs to provide a database update algorithm to
minimize its impact on the rule matching process.

The bit-map-based range encoding algorithm was
originally proposed by Lakshman and Stiliadis [14]. The
application of the bit-map-based range encoding for packet
classification using a TCAM has also been reported [16],
[17], [18]. In particular, the rule encoding schemes proposed
by van Lunteren and Engbersen [17], [18] are the most
effective schemes as they can encode N nonoverlapping
ranges using only log2ðN þ 1Þ bits.

All of the existing range encoding schemes are top-down
approaches. That is, they strive to design the most efficient
rule encoding algorithms by assuming the existence of the
needed hardware to support search key encoding at high
speed. For example, the search key encoding approaches
proposed in [14], [17], [18] assume the existence of multiple
processors and/or multiple memories for parallel search key
encoding. Some other schemes simply do not address search
key encoding issues (for example, see [15]). Another example
of the top-down approach is the work by Spitznagel et al. [19],
which addresses TCAM power and range matching issues by
designing a new TCAM architecture.

The research based on a top-down approach is of great
importance because it provides insights, directions, or even
solutions on how the next-generation TCAM-based packet
classifiers should be designed. What is missing, however, is
an approach from the bottom up, that is, designing range-
encoding schemes subject to hardware constraints of the
existing TCAM-based packet classification solutions. A
bottom-up approach may not offer the highest encoding
gain, but it ensures that, when applied to an existing
TCAM-based packet classifier, it will work with only
software upgrades. A bottom-up approach is of paramount
importance for any system vendors who use a third-party
TCAM coprocessor in their system design. These vendors
are badly in need of a range-encoding scheme, which not
only significantly improves TCAM storage efficiency but
also requires only software upgrades, leaving the existing
hardware unchanged. As NPUs and TCAM coprocessors
are fully integrated for major NPU vendor solutions, which
are widely used by system vendors, including the Intel
IXP2xxx series [11] and AMCC nP7xxx series [7], [12], there
is an increasingly pressing need to develop efficient bottom-
up range encoding schemes that can be immediately
programmed in any NPUs using a TCAM coprocessor for
packet classification. Unfortunately, to the best of our
knowledge, no such solution exists today.

In this paper, we propose a Dynamic Range Encoding
Scheme (DRES). DRES is a bottom-up solution, which can
be readily programmed in any NPU using a TCAM

coprocessor for packet classification. Statistical analyses on
both real-world PF samples and a statistical model demon-
strate that DRES can significantly improve the TCAM
storage efficiency in support of range matching. Moreover,
DRES brings the following novelties to range encoding
designs. First, unlike most existing top-down schemes,
which mainly focus on the design of efficient rule encoding
algorithms, DRES is a comprehensive solution that provides
all four algorithms needed for its immediate implementa-
tion, including a rule encoding algorithm, a search key
encoding algorithm, a range selection algorithm, and a
database update algorithm. Second, in DRES, an encoded
rule structure is designed which allows any subset of ranges
in any subset of rule fields to be encoded. This allows DRES
to have full control over the encoded rule size and the
number of rule fields to be encoded, making it possible for
DRES to exploit various design trade-offs and adapt to the
changing rule database structure or rule pattern to achieve
the maximum encoding gain. Third, the DRES database
update algorithm allows uninterrupted search key encod-
ing and rule matching without TCAM locking for database
updating. Finally, DRES is a general range encoding
framework that allows any existing range encoding algo-
rithms to be incorporated for range encoding. Of course,
different range encoding algorithms will lead to different
design complexities of the other three algorithms. In this
paper, DRES is designed in the context of a simple bit-map
intersection algorithm.

Furthermore, we note that, although primarily designed
as a bottom-up solution, most of the ideas developed in
DRES can be leveraged in the design of top-down
approaches as well. For example, a variation of DRES with
parallel search key encoding is successfully adopted in the
design of a distributed TCAM-based packet classifier [25]
that matches a 40 Gbps line rate.

The rest of this paper is organized as follows: Section 2
describes how the rules are expressed in a TCAM. The
detailed description of DRES is given in Sections 3 and
Section 4. Section 3 describes in detail how rules and search
keys are encoded and how ranges are selected for encoding.
Section 4 details the encoded range update procedure.
Section 5 evaluates the performance of DRES based on real-
world databases. Section 6 analyzes the performance of the
DRES based on a statistical model. Finally, Section 7
concludes this paper.

2 RULE IMPLEMENTATION IN TCAM

Basically, there are two types of TCAM coprocessors in terms
of the number of interfaces that they support, that is, a single
interface for NPU and two interfaces, one for NPU and the
other for CPU. For a TCAM coprocessor with a single
interface, the TCAM database update process must share the
same interface with the lookup process, while, for a TCAM
coprocessor with two interfaces, the TCAM update process
may use either interface. In terms of performance, it is better
to use the CPU interface for TCAM database update if it is
available. However, due to the possible simultaneous rule
matching for lookup and rule modification for rule updating,
TCAM database updating through the CPU interface may
cause erroneous rule matching. This makes it harder to design

CHE ET AL.: DRES: DYNAMIC RANGE ENCODING SCHEME FOR TCAM COPROCESSORS 903

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 13, 2009 at 03:00 from IEEE Xplore. Restrictions apply.

TCAM database update algorithms for cases when the CPU
interface is used for updating. For this reason, DRES focuses
on the TCAM coprocessors with two interfaces using the CPU
interface for TCAM database updating. The proposed lock-
free updating algorithms can be easily adapted to one
interface case.

Fig. 1 gives a logic diagram showing how a TCAM
coprocessor works with an NPU. A TCAM coprocessor
includes two pieces of memory in general, that is, a TCAM
and an associated memory (for example, an SRAM). The
TCAM is organized in slots. The slot size is generally
configurable, allowing different tables in TCAM to be
configured at different slot sizes, for example, 64, 72, 128,
192, or 256 bits. A bit in each slot can take one of these three
values: 0, 1, or “don’t care,” denoted as “�”. The rules in a
PF table are placed in the TCAM and each rule entry (as will
be defined shortly) maps to a memory address in the
associated memory in which the corresponding action code
is kept. A rule takes one or multiple slots. When a packet
comes, the NPU generates a search key based on the packet
header information and passes it to the TCAM coprocessor
to be classified via an NPU-TCAM coprocessor interface. A
local CPU is in charge of rule table update through a
separate CPU-TCAM coprocessor interface.

We use an example to guide the discussion throughout
the rest of this paper. Consider a typical five-tuple 104-bit
(for IPv4)1 PF rule composed of the following five fields:
{source IP address, destination IP address, source port, destina-
tion port, and protocol number}. Each rule is associated with
an action. Fig. 2 gives eight such example rules, L1; . . . ; L8,
and their corresponding actions. A port number can be an
exact number or a range and each distinct port number for a
given port field is called a unique port. For example,
{> 1,023}, {2,047}, {256-512}, and {< 1,024} are four unique
source ports.

Fig. 3 depicts what it looks like when rules L1 and L2 are
placed in a TCAM with a 64-bit slot size. L1 does not have a
range in any of its fields and, hence, it takes two slots, with
24 free bits left in the second slot. Each such rule in the TCAM
which takes the minimum number of slots is defined as a rule
entry.L2 has a range {256-512} in its destination port field. This
range cannot be directly expressed in a TCAM and must be
partitioned into two subranges, {256-511} and {512}, as shown

in Fig. 3. Hence, L2 takes four slots (slots 3, 4, 5, and 6) or two

rule entries in the TCAM. Note that the action codes

corresponding to the two rule entries must be identical and

equal to the one corresponding to L2.
To facilitate further discussion, a range is said to be

exactly implemented in a TCAM if it is expressed in a TCAM

without being encoded. A rule with an exactly implemented

range therefore may take multiple TCAM rule entries, as in

the case for L2. As another example, six rule entries are

needed to express range {> 1,023} in a TCAM if the range is

exactly implemented for its two port fields, as shown in

Fig. 4. Hence, L5 takes 6� 6 ¼ 36 rule entries if it is exactly

implemented, resulting in a multiplicative rule expansion in

TCAM. Ranges that cannot be exactly implemented using

one rule entry in a TCAM are called noncompact ranges.

Other ranges that can be exactly implemented in one rule

entry in a TCAM are called compact ranges. For example,

range {< 1,024} in L8 is a compact range and it can be

exactly implemented as 000000********** in TCAM. To be

exactly implemented, a noncompact range must be decom-

posed into a set of compact subranges, as in the case for L2.

In what follows, we simply refer to a noncompact range as a

range and refer to a subrange as either a compact or

noncompact subrange.

3 RANGE ENCODING

This section details how rules and search keys are encoded

and how ranges are selected for encoding.

904 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 7, JULY 2008

1. For IPv6, the procedure is similar; only the rule length varies.

Fig. 1. A network processor and its TCAM coprocessor.

Fig. 2. An example of five-tuple rules. “x” represents a wild card byte.

Fig. 3. Rules in a TCAM. The range {256-512} is split into two

subranges, {256-511} and {512}, and implemented as subranges 1 and

2. “�” represents a “don’t-care” bit and “x”=“********” represents a wild

card byte. The other numbers represent the actual byte values.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 13, 2009 at 03:00 from IEEE Xplore. Restrictions apply.

3.1 Structures of Encoded Rule and Encoded
Search Key

Instead of replacing a rule field altogether by a sequence of
code bits (for example, see [16], [18]; collectively called the
complete encoding approach in this paper), we design a hybrid
encoding approach for DRES. The hybrid encoding approach
retains all of the fields in a rule and appends a sequence of
code bits of length ct, called the code vector, to the rule to
form an encoded rule. Accordingly, an encoded search key
is formed by appending a sequence of code bits of length ct,
called the index vector, to the original search key. The
encoded rule and search key structures are shown in Fig. 5.

Code vectors and index vectors are calculated using a
rule encoding algorithm and search key encoding algo-
rithm, respectively. Due to the slotted TCAM structure,
there will usually be some free bits left in each rule entry.
For example, 24 free bits are left for the example given in
Section 2. One may simply use these free bits to encode the
ranges for free. However, if there is no free bit or the
number of free bits is too small, DRES allows extra slots to
be allocated for each rule entry as long as the overall TCAM
storage efficiency is improved by encoding ranges using
these slots. Since the number of ranges that can be encoded
and the encoding gain are determined by ct and rule
database structure, a dynamic range selection algorithm
must be designed to maintain high encoding gain in the
presence of the changing rule database structure.

In our hybrid encoding approach, if a rule has no
encoded range in any of its fields, the code vector is wild
carded and the rule itself remains unchanged. This ensures
that the index vector in a search key will always match the
code vector in the encoded rule. If there is an encoded range
in any field in the rule, that field is wild carded and the
corresponding code vector is encoded based on the
encoding rules to be described in Section 3.4. In this case,
the matching between that range field and the correspond-
ing field in the search key is replaced by the matching
between the code vector and the index vector.

On the surface, it appears to be advantageous to adopt
the CE approach rather than a hybrid encoding approach
because, for the CE approach, the encoding gain can be
improved by not only encoding all of the ranges but also
eliminating the rule fields to reduce the rule length. Let us
look at the example given in Section 2. If both 16-bit source
and destination port fields are encoded and eliminated,
there will be 24þ 16� 2 ¼ 56 free bits left for range
encoding, which is 36 bits more than when the hybrid
encoding approach is used. This, however, may not be true
in practice because, to eliminate a rule field altogether, one
must encode all of the unique values for that field in the rule
database, whether they are range values or not. This means

that one has no control over the code vector length ct, which
is rule database dependent. For example, if ct > 56, at least
one extra slot will have be added to each rule entry to
accommodate the code vector. This, however, may lead to
negative encoding gains, as we shall see in Section 5.
Moreover, we also note that the ability to decide which
ranges in which rule fields should be encoded allows DRES
to have full control not only over the encoded rule size but
also over both time and space complexities for search key
encoding, as discussed in the following section.

3.2 TCAM-Based Search Key Encoding Process

Assume that mk ranges from the kth rule field (for
k ¼ 1; 2; . . . ; K) in a rule database are selected for encoding.
Then, K search key fields matching against the correspond-
ing K range tables must be done to generate an index vector
and, hence, an encoded search key. We refer to this process
as the search key encoding process. The search key
encoding must be performed at wire speed by the NPU
on a per-packet basis. As a result, most top-down
approaches make the assumption that parallel search key
encoding can be done either by a set of processing cores
[16], [17] or a set of on-chip or off-chip memories [19].
However, not all of the NPUs on the market today have
multiple processing cores or multiple memories or memory
interfaces available to implement such encoding functions.
To ensure the applicability of DRES to all of the existing
NPU-TCAM coprocessor solutions, we propose using the
TCAM coprocessor itself for sequential search key encoding.
In what follows, we discuss how such a TCAM-based
solution works and also the related performance trade-offs.

As shown in Fig. 6, K þ 1 tables are allocated in TCAM,
including one encoded rule table and K range tables. In the
encoded rule table, a code vector is appended to each rule to
form an encoded rule. Each rule in the rule table maps to an
action in the associated memory. Likewise, each range in a
range table maps to an intermediate index vector in the
associated memory. Note that each range in a range table
must be represented by multiple TCAM entries (not shown in
Fig. 6), and the corresponding intermediate index vector must
be duplicated for every entry belonging to the same range.

Each search key encoding involves K TCAM range table
matches. The kth search key field is matched against the
kth range table, causing an intermediate index vector to be
returned. Upon receiving a returned intermediate index
vector, the NPU updates the index vector (initially set to
NULL) by performing an OR operation between the index
vector and the returned intermediate index vector. This
process continues until all of the K range table matches are

CHE ET AL.: DRES: DYNAMIC RANGE ENCODING SCHEME FOR TCAM COPROCESSORS 905

Fig. 4. Range {> 1,023} is expressed in terms of six subranges in a

TCAM.
Fig. 5. Rule structures without and with range encoding and the encoded

search key structure.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 13, 2009 at 03:00 from IEEE Xplore. Restrictions apply.

performed. Next, the encoded search key is formed by
appending the final index vector to the original search key.
This encoded search key is used to match against the
encoded rule table. In summary, a rule table lookup with
range encoding requires K range table lookups for search
key encoding, plus one encoded rule table lookup.

Using TCAM for search key encoding provides an
immediate solution applicable to any NPU using a TCAM
coprocessor for packet classification. However, heavy use of
the TCAM coprocessor for search key encoding may result
in reduced packet classification performance due to TCAM
access contention. Here, we quantify the performance
impact of using TCAM for sequential search key encoding.
Consider that a TCAM provided by Ayama [5] runs at
133 MHz, that is, 133 million lookups per second. For wire-
speed forwarding at a 10 Gbps line rate, up to 31.3 million
packets need to be classified in 1 second in the worst case.
Thus, each packet is allowed to have 133=31:3 ¼ 4:28 TCAM
lookups. If a rule entry takes s slots, a search key matching
against a PF table requires s lookups. For a five-tuple rule,
two lookups are needed, assuming that the slot size is
64 bits. Furthermore, assume that the size of any field with
encoded range is not larger than the size of a slot, that is,
64 bits. Then, each range table matching for search key
encoding requires one TCAM lookup. Now, if both the
source and destination port fields have ranges to be
encoded, that is, K ¼ 2, each PF table matching requires
four TCAM lookups. In this case, wire-speed forwarding at
a 10 Gbps line rate can be achieved. For an NPU supporting
a 2.5 Gbps line rate, each packet is allowed to perform
17 lookups. DRES achieves storage efficiency by reducing
TCAM lookup throughput in a factor of 2. In this case, all
five fields can be encoded if necessary. Encoding more
fields leads to heavier TCAM access contention but better
TCAM storage efficiency. The ability of DRES to allow any
subset of rule fields to be selected for encoding makes it
possible for DRES to fully exploit this trade-off.

Finally, we note that an alternative approach is to use an
SRAM or DRAM for sequential range encoding (all of the
existing NPUs have at least one memory interface for external
memory access). To achieve deterministic one-memory-
access performance, a possible solution is to perform direct
range table indexing, as suggested in [16], that is, allow the

rule-field-size-worth memory address space to be allocated
for a range table. Each entry contains an intermediate index
vector corresponding to the range to which the memory
address of the entry falls. However, this approach quickly
becomes infeasible because the memory occupancy for a
range table grows exponentially with the size of the rule field
to be encoded. Moreover, in the worst case, a single range
update in a range table may cause change in all of the range
table entries, making database update a great challenge. To
date, there is simply no efficient SRAM/DRAM memory
database update algorithm available which allows uninter-
rupted range table matching.

3.3 Dynamic Range Selection Algorithm

As we shall explain in more detail in this section, for
simplicity, we use the bit-map scheme in [14], [16] to encode
ranges, that is, each unique range is mapped to a unique bit.
This scheme is referred to as the bit-map intersection
scheme [18]. This scheme allows us to design an optimal
dynamic range selection algorithm. The algorithm is run in
the software in the control plane.

Fig. 7 gives a general range selection procedure for
selecting m ranges for encoding out of n ranges. Si is the
number of subranges needed to exactly implement range Ri

ði ¼ 1; 2; . . . ; nÞ in a TCAM. Ei is the number of rule entries
to implement all of the rules that contain range Ri. Gi is the
encoding gain for Ri, defined as the number of rule entries
that can be eliminated if Ri is encoded. To select m ranges to
be encoded, m steps are required, each selecting one range.
In the first step, the values of E and G for all of the ranges
are calculated, assuming that no range is selected for
encoding. Then, the range with the maximum G is selected
as the first range for encoding. Suppose that R1 is selected.
In the second step, E and G for all of the ranges, except for
R1, are updated, assuming that all of the rules containing R1

have R1 encoded.
Then, the range with the maximum G is chosen to be the

second encoded range. This procedure continues until
m ranges are selected. The computational complexity for
this algorithm is OðnmÞ.

For example, in the PF table, as shown in Fig. 2, there are
a total of n ¼ 7 ranges in both the source and destination
port fields. Ranges R1-R5 come from the destination port
field. They are R1 ¼ f256� 512g, R2 ¼ f768� 2; 047g, R3 ¼
f6; 000� 6; 064g, R4 ¼ f> 1; 023g, and R5 ¼ f512� 1; 536g.
The rest of the two ranges come from the source port field,
that is, R6 ¼ f> 1; 023g and R7 ¼ f256-512g. Note that,
although R1 and R7 have the same range value, they are
counted as two different ranges because they come from

906 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 7, JULY 2008

Fig. 6. The encoding process. K þ 1 TCAM searches for PF table

matching in a TCAM coprocessor. “cv” stands for code vector.

Fig. 7. Dynamic range selection procedure. The tables are range

encoding gain tables in each step.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 13, 2009 at 03:00 from IEEE Xplore. Restrictions apply.

different fields. The same is true for R4 and R6. f< 1; 024g in
L8 is a compact range and, hence, is not counted as a range
here. Suppose that m ¼ 3. Then, the range encoding gain
tables are given in Fig. 8.

Initially, E and G, as shown in Fig. 8a, are calculated,
without any ranges being encoded. For instance, the
encoding gain with respect to R6 is calculated as follows:
As stated in the previous section, six subranges are needed
to express R6 (also R4) in a TCAM. Since L5 has R6 in its
source port and R4 in its destination port, 36 rule entries are
needed to exactly implement L5. Similarly, 12 rule entries
are needed to exactly implement L3 because two subranges
are needed to express R2. Thus, a total of 48 entries are
needed to exactly implement both L3 and L5, both having
R6 in their source port fields. If R6 is encoded, the six
subranges that represent R6 in the TCAM are reduced to
one encoded bit in an encoded rule. Then, the numbers of
rule entries that are required to express L5 and L3 are
reduced to six and two, respectively. Hence, the gain for
encoding R6 is 40, which is the largest in column G in
Fig. 8a. According to the range selection procedure, R6 is
selected to be encoded at this point. Then, the values of E
and G for all of the ranges, except for R6, are updated,
assuming that R6 is encoded. The results are shown in
Fig. 8b. Now, R4 is selected to be encoded since it has the
largest G value. Consequently, the values for E and G are
updated again, assuming that R6 and R4 are encoded. The
results are shown in Fig. 8c. Since both R1 and R3 have the
largest G value among the three, one of them is randomly
selected (here, R1 is selected). Then, the encoding gain table
is shown in Fig. 8d.

When the rules with ranges are added or deleted, the
encoding gain for some or all of the ranges may be changed.
Hence, the above range selection procedure needs to be
executed in the software upon each rule update involving
range changes. However, since a single rule update
involving range changes cannot drastically change the
ranks of the existing ranges in terms of encoding gains,
most of the executions of the selection procedure are not
expected to lead to the encoded range updating.

3.4 Code Vector and Index Vector Encoding
Algorithms

DRES is a comprehensive range encoding framework in the
sense that it can incorporate any range encoding algorithms
in its design. In this paper, the bit-map range encoding
algorithms developed in [14], [16], [17], [18] are fully
leveraged for code vector and index vector encoding. The

most efficient BM algorithm is the P2C algorithm proposed
in [18], which allows N ranges to be encoded by using only
log2ðN þ 1Þ bits in the best case, that is, when the ranges do
not overlap with one another. The algorithm requires N bits
to encode N ranges in the worst case, that is, when any
range overlaps with any other ranges. It can be shown that
the dynamic range selection problem for the P2C algorithm
can be translated in polynomial time to a weighted
knapsack problem [24], which is NP-complete. Hence, it
involves the design of a heuristic range selection algorithm.
Moreover, it is much easier to design a lock-free encoded
range update algorithm for the BM intersection algorithm
than that for P2C. For these reasons, in this paper, we
simply adopt the BM intersection algorithm for DRES.
However, the range encoding gain of DRES using the
P2C algorithm is analytically evaluated in Section 6. Note
that, when incorporating either encoding scheme in DRES,
it is used in the context of the hybrid encoding approach,
that is, encoding a subset of ranges. Hence, in what follows,
we simply refer to these schemes as the hybrid encoding
algorithm with Bit-Map (BM) Intersection and the hybrid
encoding algorithm with P2C, respectively.

In BM, each bit in a code vector is assigned to a specific
encoded range, which can come from any field in a rule.
The code vector for a particular range Ri has value 1 in its
assigned ðbiÞth bit and “don’t care,” that is, “�” in all other
bits. For example, let us encode seven ranges Ri coming
from either the destination or source port field of the eight
rules Li, where i ¼ 1; 2; . . . ; 8. Suppose that the code vector
has 8 bits and the ith bit (assuming that bi ¼ i) is assigned to
Ri. Then, the code vector for Ri has 1 in the ith bit and � in
all other bits. This way, the code vector for R1 is 1*******.

If a rule has more than one field with encoded ranges,
then the code vector for the rule has 1s in the corresponding
bits, which are assigned to these encoded ranges, and has
“�” for all of the other bits. For example, L3 has R6 in its
source port and R2 in its destination port. Hence, the code
vector for L3 is *1***1***. If a rule has no encoded ranges, the
corresponding code vector is simply wild carded.

Now, let us discuss how we can encode the index vector.
As stated in Section 3.2, ranges from different fields must be
encoded using different range tables. The index vector
encoding method is the same for each range table. In what
follows, we first show by example how the index vector is
encoded, given that a set of ranges from a single rule field is to
be encoded. Let us encode five ranges Ri ði ¼ 1; 2; . . . ; 5Þ,
which are taken from the destination port field. Among these
ranges,R1 overlaps withR5,R2 overlaps withR4 andR5,R3 is
a subrange ofR4, andR4 overlaps withR5. The encoded index
vectors are given in Table 1. Note thatRr1;r2;...;rn represents the
common subrange among Rr1

; Rr2
; . . . ; Rrn .

Similarly to the code vector, the ðbiÞth bit in the index
vector is assigned to range Ri. The encoding rules used to
generate the index vectors can then be stated as follows:

1. For Ri, the ðbiÞth bit in the index vector must be set
to 1.

2. If Ri is a subrange of Rj, its index vector must have
its ðbjÞth bit set to 1.

3. Rr1;r2;...;rn for n overlapping ranges. Rr1
; Rr2

; . . . ; Rrn

needs to be expressed as a separate range if it is a

CHE ET AL.: DRES: DYNAMIC RANGE ENCODING SCHEME FOR TCAM COPROCESSORS 907

Fig. 8. An example of range encoding gain tables. (a) Initial gain table.

(b) After R6 is chosen. (c) After R6 and R4 are chosen. (d) After R6, R4,

and R1 are chosen.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 13, 2009 at 03:00 from IEEE Xplore. Restrictions apply.

new range other than any existing encoded ranges.
The corresponding index vector must have its
ðbr1
Þth; ðbr2

Þth; . . . ; ðbrnÞth bits set to 1.
4. All other bits in the index vector must be set to 0s.
5. The weight or match priority for a range is equal to

the number of 1s in the corresponding index vector.

When the field value in a search key matches a common
subrange of n encoded ranges, it means that this field
belongs to all n ranges. The greater the number of 1s in the
index vector, the more ranges are being matched and the
higher the match priority that this subrange must have.
Hence, the match priority for a (sub)range can be simply set
as the number of 1s in the corresponding index vector. In
this paper, we consider an order-based TCAM. The rules in
an order-based TCAM are arranged in an ordered list.
When multiple rules/ranges are matched, the one in the
lowest memory location is selected.

The index vectors in the range Table 1 are encoded as
follows: 1) Assign a bit bi (here, bi ¼ i) to each range Ri

ði ¼ 1; 2; . . . ; 5Þ and set the corresponding bit to 1. 2) Set the
bit in the index vector for each range at the bit location
corresponding to a superrange of that range, if any. For
example, since R3 has R4 as its superrange, the fourth bit in
the index vector for R3 is set to 1. 3) Add all of the common
subranges to the range table and the corresponding index
vectors are set, following rule 3 above. For example, R15 is a
new subrange of R1 and R5 and, hence, it is added to the
range table and the first and fifth bits in the corresponding
index vector are set. On the other hand, the common range
of R3 and R4 is the same as R4 and, hence, it does not need
to be encoded again.

Noncompact range R0, with all wild card bits, is added
to every range table and it has the lowest match priority.
The index vector for this range is NULL. If the field of a
search key does not match any range in a range table, R0

will be matched. All 0s in the index vector means that no
encoded range is matched for this field value. After all five
ranges in the destination port field are encoded, the last
three bits are not assigned to any ranges yet. These bits can
be used to encode ranges from other fields. Let us encode
R6 and R7 from the source port field. The resulting range
table is shown in Table 2.

Based on the above range tables, we now can give a
concrete example for search key encoding. Assume that
the NPU generates a five-tuple search key sk ¼
f1:2:3:4; 5:6:7:8; 1025; 1028; 17g from the IP header of a

received packet. Initially, the index vector iv is set to
NULL. First, the NPU passes source port number 1,025 to
the TCAM coprocessor to match against Table 2. Since port
number 1,025 falls into R6, an intermediate index vector
iv1 ¼ f00000100g is returned. Second, the NPU updates the
index vector by performing an OR operation, that is,
iv ¼ ivjiv1 ¼ f00000100g. Third, the NPU passes destination
port number 1,028 to the TCAM coprocessor to match against
Table 1. Port value 1,028 matches R2, R4, R5, R24, R25, R45,
and R245. As a result, the index vector iv2 ¼ f01011000g for
R245 is returned, because it has the highest weight value.
Fourth, the NPU updates the index vector again, that is,
iv ¼ ivjiv2 ¼ f01011100g. Bit value 1 at the second, fourth,
fifth, and sixth bits in iv indicates that the destination port
number of the search key falls in the ranges R2, R4, and R5

and the source port number falls intoR6. Finally, an encoded
search key is formed by simply appending iv to sk, that is,
encoded search key ¼ fsk; ivg, which is used to match against
the encoded rule table in the TCAM.

4 ENCODED RANGE UPDATE PROCESS

In a PF table, new rules may be added and old rules may be
deleted from time to time. Hence, some popular ranges may
eventually become unpopular and vice versa. The dynamic
range selection algorithm selects ranges with the largest
encoding gains for encoding. If any of the newly selected
ranges are different from the existing ones, the encoded
ranges which are not selected must be unencoded to release
the assigned bits to encode the newly selected ranges. The
process for updating encoded ranges and the corresponding
rules is called encoded range update process.

In this section, we propose a lock-free encoded range
update algorithm, which allows the encoded range update
and the search key encoding/PF table lookup processes to
occur simultaneously without impacting the lookup per-
formance. Although the encoded range update process is
carried out through a CPU-TCAM coprocessor interface, the
search key encoding and PF table lookup processes are
performed through an NPU-TCAM coprocessor interface,
as shown in Fig. 1. The basic idea is to maintain consistent
and error-free rule and range tables throughout the update
process, thus eliminating the need for locking the tables.
The lock-free idea was first proposed in [23] to allow a lock-
free rule update for PF in a TCAM. We extended the idea to
allow an encoded range update, which involves both range
and PF table updates.

Generally speaking, updating a TCAM database without
TCAM locking may generate two possible types of incorrect
TCAM lookups, that is, erroneous and inconsistent lookups.
An erroneous lookup may occur if a TCAM rule gets a
match while the rule or its corresponding action is partially

908 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 7, JULY 2008

TABLE 1
Index Vector Encoding for the Destination Port Field

TABLE 2
Index Vector Encoding for Source Port Field

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 13, 2009 at 03:00 from IEEE Xplore. Restrictions apply.

updated. Here, rules and actions are used in a generic sense
and may represent ranges and index vectors, respectively.
Inconsistent lookup means that a search key does not match
the best matched rule. An inconsistent lookup may occur
when a match takes place in the middle of a database
update process and there is no guarantee of table consis-
tency until the process finishes.

In general, each TCAM slot has a valid bit field
associated with it, which allows a rule entry to be activated
or deactivated/deleted by simply setting or resetting the
valid bit for that rule entry. As explained in [23], the key to
avoiding erroneous lookups is to avoid directly overwriting
rule fields and/or the corresponding action when that rule
entry is active, that is, it may be matched. Instead, any write
operations for a rule/action over an existing rule/action must
be decomposed into a write process including three operations:
1) inactivate the rule, 2) write the rule/action, and 3) activate
the rule again. Writing a rule/action into an empty rule entry
only requires the last two operations. Likewise, any opera-
tions to move a rule-action pair to a new TCAM-associated
memory location must be decomposed into a move process
including 1) using a write process to write the pair to the new
location and 2) inactivating the rule at the old location. For
DRES, it is assumed that the write and move processes are
used and, hence, no erroneous lookups may occur. In what
follows, we simply usewrite andmove to stand for write and
move processes, respectively.

Inconsistent lookups will not occur if, for each rule move,
a search key always matches a rule that would be matched
before the rule move. For each rule addition or deletion, a
match always results in a matched rule that is the same as
that which would be matched either right before or after the
rule addition or deletion [23]. Any TCAM database update
algorithm that ensures consistent and error-free rule
matching does not require TCAM locking for database
updating. In what follows, a lock-free update algorithm is
described in detail.

In DRES, all of the empty range/rule entries in a range/
rule table are kept either at the top or at the bottom of the
table. At least one empty range/rule entry is assumed to be
available to serve the purpose for consistent encoded range
updates. For each table in an order-based TCAM, we
assume that entries at the top in a table have higher match
priorities than the ones at the bottom.

In DRES, a free bit in the index/code vector is reserved and
used for encoded range updates. The encoded range update
process can be decomposed into two phases: 1) use the free bit
to encode a newly selected range and 2) unencode an encoded
range to release the free bit. These two phases are explained
separately in the following sections.

4.1 Encoding a Newly Selected Range

For a newly selected range to be encoded, the range that
appeared in any rule in the original encoded rule table in the
TCAM is exactly implemented. In this case, a consistent rule
table is maintained if the range table update is ahead of the
rule table update. This is because, when a search key, whether
it is encoded or not, matches against an exactly implemented
rule, it is nothing more than a search key matching without
encoding at all. Hence, in our algorithm, the range table is
updated first, followed by the rule table update.

Note that only the range table associated with the field to
which the newly selected range belongs needs to be
updated. The free bit in the index vector is assigned to
encode this range. Then, the newly selected range and all
possible common subranges generated by this and the
existing encoded ranges are added to the table. If this newly
selected range is a superrange of an existing encoded range,
the corresponding bit in the index vector for that existing
range must be set to 1.

Similarly to the PF table update [23], there are two steps
for the range table update. The first step is to consistently
move the ranges and their index vectors from top (bottom)
to bottom (top) while leaving the entries for the newly
selected range and corresponding subranges empty. To
ensure table consistency upon each move, the ranges are
moved according to their original order. This order of
moves maintains the original priority relationships and,
thus, the table consistency. If a range is a subrange of the
newly selected range, the corresponding bit in the index
vector is changed to 1 after it is moved to a new location.
This change has no effect on the search key matching since
the corresponding bit in the code vector in an encoded rule
is wild carded.

The second step is to write the newly selected range, the
associated subranges, and their index vectors to the
preallocated locations in decreasing priority order (that is,
the ranges with higher match priorities are added before the
ranges with lower priorities are added).

After finishing the range table update, the following
simpler process is used to update the rule table. The rules
are moved from top (bottom) to bottom (top), with their
relative orders unchanged. If a rule involves the newly
encoded range, then, at the new location, the rule is moved
and the range is encoded by adding the corresponding bit
in its code vector and wild carding the field of the rule in
which the range appears. Hence, multiple exactly imple-
mented rule entries belonging to the same rule are reduced
to one rule entry after the rule is moved to the new location.

Fig. 9 gives a simple example demonstrating how we can
update a rule with a newly encoded range. Assume that L1

and L2 are implemented in a TCAM. L1 has a higher match
priority than L2. The update process must keep the relative
match priority for L1 and L2 unchanged at all times. L2 has
R1 in its destination port field. The exact implementation of
L2 with respect to R1 requires two rule entries, correspond-
ing to two subranges {256-511} and {512}, represented by
2-byte values 1x and 20, respectively, as shown in Fig. 9a.
Assume that the first bit of the code vector is assigned to
encode R1 and the range table is already updated. Then, the
rule update for L2 involves two steps: 1) write L2 to a new
location with the newly selected range encoded and
2) delete the rule entries at its old locations. Fig. 9b gives
the configuration after Step 1 completes, that is, L2 is
written and activated at slots 7 and 8. Finally, L1 is moved
to slots 5 and 6. During the update process, L1 always has a
valid copy above L2, which maintains the original priority
relationship and provides a consistent table.

4.2 Releasing Encoded Ranges

When the newly selected range is encoded, some rule
entries are released. If no free bit is left in the index and

CHE ET AL.: DRES: DYNAMIC RANGE ENCODING SCHEME FOR TCAM COPROCESSORS 909

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 13, 2009 at 03:00 from IEEE Xplore. Restrictions apply.

code vector, the encoded range with the least encoding gain
is unencoded to release a free bit. To unencode a range, the
corresponding field in a rule with this encoded range needs
to be exactly implemented, which increases the number of
rule entries in the table. However, the increased number of
rule entries must be less than the reduced number of rule
entries by encoding a newly selected range. Otherwise, the
encoded range update will not happen in the first place.
Hence, only one empty rule entry in the rule table is
required to do an encoded range update.

To release an encoded range, the rule table is updated first,
followed by the range table update. For the rule table update,
the update process changes the encoded range into an exactly
implemented range in all of the rule entries having this
encoded range. It does this through consistent rule moves and
by changing the corresponding bit in the code vector to �s. For
the range table update, both the encoded range and the
derived subranges need to be deleted. To ensure range table
consistency, these ranges must be deleted in increasing match
priority order. In addition, if another encoded range is the
subrange of the range to be unencoded, the corresponding bit
in the index vector must be reset. The consistent move process
for the range table update is similar to that for adding an
encoded range.

4.3 Encoded Range Update Delay

The proposed encoded range update algorithm does not
require locking TCAM tables during the update process.
However, to ensure consistent and error-free lookups, the
algorithm requires a relatively large number of write and
delete operations, resulting in a longer update delay. This
raises the concern as to whether the update delay would be
too large such that the update process cannot keep up with
the update requests. We resolve this issue by giving a rough
estimation.

We only consider the rule table update delay for doing
the encoded range update. The update delay of the range
table is neglected because the size of a range table is, in
general, much smaller than the size of a rule table. Assume

that there are Ner rule entries in the rule table. All of the rule
entries in the table are moved once for adding a newly
encoded range and once for releasing an encoded range.
Hence, the number of rule entry writes and deletes is 2Ner

for each encoded range update. Assume that one rule entry
write and delete cost 100 ns. Then, for a rule table with
100,000 rule entries, the encoded range update delay is
0.02 second and, for a table with one million rule entries, the
update delay is 0.2 second This update delay is negligible
given that the range popularity distribution changes much
slower than the rule update rate, which occurs on the order
of once every few seconds to once every few days.

5 PERFORMANCE EVALUATION BASED ON

REAL-WORLD DATABASES

In this section, the performance of DRES is evaluated and
compared with Liu’s algorithm [16], called the CE algo-
rithm, based on four real-world five-tuple PF databases.
The range statistics of the four real-world databases are
given in Table 3. The number of rules varies from 183 to
1,550. The storage expansion ratio, defined as the number of
rule entries divided by the number of rules in a TCAM, is
from 1.41 to 6.25. The percentage of rules with ranges spans
a wide range, that is, from 7.7 percent to 54.6 percent. The
number of unique ports, including both exact port numbers
and port ranges, is from 9 to 34 for the source port subfield
and from 40 to 54 for the destination port subfield. Some
ranges, such as {> 1,024}, can be exactly implemented
without taking multiple slots. These ranges do not need to
be encoded and are considered exact port numbers. The
number of unique ranges found in any of these rule tables is
small. For example, for both databases 3 and 4, the
maximum number of unique ranges is 4 for the destination
port and the maximum number of ranges in both port
subfields is 7. The total number of unique ranges found in
all four databases is 10.

Table 4 shows the range frequency and the number of
subranges to exactly implement the range in TCAM for all
four databases. FSP, FDP, TF, and NSUB represent the
range frequency in the source port, in the destination port,
in both ports, and the number of subranges to exactly
implement the range, respectively.

In Table 4, one notes that RN1 is the most popular range,
making up about 88.3 percent of all the ranges. Both
databases 1 and 2 have RN1 and RN4 in both source and
destination ports. Database 3 has RN1, RN5, and RN6 in its

910 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 7, JULY 2008

Fig. 9. Updating process in a rule table. (a) L1 is at slots 1 and 2. L2 is
exactly implemented by two rule entries: One is at slots 3 and 4 and the
other is at slots 5 and 6. (b) Write L2 to a new location with the encoded
destination field. (c) Delete the two exactly implemented rule entries at
slots 3-6. (d) Move L1.

TABLE 3
Range Statistics of Four Real-World PF Databases

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 13, 2009 at 03:00 from IEEE Xplore. Restrictions apply.

source port and RN1, RN7, RN8, and RN9 in its destination
port. Database 4 has RN1, RN2, and RN3 in both the source
and destination ports and RN10 in the destination port.

Now, we apply DRES to all four databases for a 64-bit
slot TCAM, which is widely used in today’s TCAM
coprocessors. As stated in Section 3, the five-tuple rule
has 104 bits. Each rule entry takes two slots in the TCAM
and each rule entry has 24 free bits, which is much larger
than 7, the maximum number of unique ranges found in the
four databases. Hence, no extra slot is needed for range
encoding.

In DRES, to encode ranges in both source and destination
port fields, two range tables are needed. We assume that all
of the range tables are stored in the TCAM and will be
counted as part of the storage cost for DRES. In each range
table, a range is exactly implemented, with each subrange
taking one slot (that is, half a rule entry). If some ranges in
the range table overlap with one another and generate a
new subrange, that new range must be included in the
range table. For the four databases, there is only one such
range, which appears in the destination range table for
database 4, that is, subrange {1,024-2,511}, which is the
common range of RN1 and RN10 and takes five slots. For
the four databases, the sizes of the range table in the source
(destination) port are 12(12), 12(12), 29(20), and 22(10) (in
slots), respectively. In practice, due to the possible encoded
range updates, a range table must be configured to be much
larger than the maximum size 29. Let us assume that
60 slots are allocated for each range table, doubling the
maximum size found in the four databases.

Note that, in DRES, as soon as either a range table is fully
utilized or all of the free bits are exhausted, DRES can stop
encoding more ranges to avoid overflowing the range table.
In contrast, for CE, all of the unique port values for an
encoded field must be encoded, each consuming a separate
bit in the code vector. Hence, the size of the code vector must
be larger than the sum of the number of unique port values for
each encoded field. Unlike DRES, which has full control over
the code vector size, the CE algorithm fails if the number of
port values is more than what the code vector can accom-
modate. Therefore, in practice, a code vector with a
sufficiently large number of bits must be configured to ensure
that the scheme does not fail. The CE algorithm allows a total
number of 40 bits (16 bits in the port field plus 24 free bits) to
be used by the code vector to encode one port field. If the
number of unique port values of that port field exceeds 40, an
extra slot must be configured for each rule entry.

From Table 3, we see that, although the number of
unique port values in the source port field is less than 40 in
all of the databases, the numbers of unique port values in
databases 3 and 4 reach 28 and 34, respectively, suggesting
that an extra slot should be configured to ensure that there
are no overflows of the code vector space. In the
performance evaluation of CE, however, we assume that
no extra slot is allocated for encoding the source port field.
However, an extra slot is assumed to be allocated for
encoding the destination port field and both the source and
destination port fields, simply because the number of
unique port values for the destination port field reaches
40 or more for all of the databases. Note that, for CE, the
TCAM storage overhead due to the range tables is not
counted, which is, in general, very large because all of the
unique source and destination ports must be included in the
range tables.

Table 5 shows the TCAM storage expansion ratio after
range encoding. For ease of comparison, the TCAM storage
expansion ratio without range encoding, as listed in Table 3,
is also listed in Table 5. After encoding ranges in both the
source and destination fields in DRES, each rule takes one
TCAM rule entry. The rule expansion only comes from the
range table (30 rule entries). If only the source (destination)
port range is encoded, the number of TCAM entries for the
encoded rules of four databases are 389(389), 243(243),
516(762), and 2,124(1,595), respectively. We observe that
DRES achieves better encoding gains than CE when ranges
in either both port fields or the destination port field only
are encoded. CE achieves better encoding gain when the
source port field only is encoded. This, however, is based on
the assumption that, in CE, no extra slots are needed for the
source port field encoding. The relatively reduced encoding
gain in DRES is due to the added overhead of a range table
in the TCAM. Note that, due to the lack of control of the
code vector size, CE may lead to negative encoding gains, as
in the case for the encoding of the destination port field and
both port fields for database 4. We also note that the TCAM
storage expansion ratio for CE is lower bounded at 1.5 when
one extra slot has to be added to each rule entry. This is
simply because each rule entry takes two slots and adding
one extra slot expands the TCAM by 50 percent, even if all
of the ranges are encoded, as in the case in Table 5 when
both ports are encoded. In contrast, DRES can reduce the
TCAM storage expansion ratio to close to 1, especially when
the rule table size is relatively large compared with the
range table sizes, as in the case for database 4.

In summary, DRES can significantly improve the overall
TCAM storage efficiency for range matching. The key to

CHE ET AL.: DRES: DYNAMIC RANGE ENCODING SCHEME FOR TCAM COPROCESSORS 911

TABLE 4
Range Frequency Distribution

TABLE 5
TCAM Storage Expansion Ratio with and without Encoding

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 13, 2009 at 03:00 from IEEE Xplore. Restrictions apply.

achieving this performance gain is to use a hybrid encoding
scheme rather than the CE scheme.

6 ANALYTICAL PERFORMANCE EVALUATION

The performance analysis in the previous section is based
on existing real-world databases, which may not capture
the worst-case scenarios that can occur in the future as the
Internet becomes more and more policy-based. In this
section, we use a probabilistic model to analyze the
performance of DRES in a wide range of parameters. This
probabilistic model allows us to perform a rather general
analysis of DRES, without having to resort to simulation,
which is often tedious and can only sample a limited
number of parameter settings.

In our model, each rule has K fields and each field can be
a range or an exact number. To avoid modeling unnecessary
details, we use compact ranges instead of both exact
numbers and compact ranges. For example, source port
numbers 80 and 23 and the source port range {< 1,024} are
instances of the compact range for the source port field.

The following parameters are defined in the model:

. N� : The total number of rules in the PF table.

. Nk: The total number of unique noncompact ranges
in field k.

. pk: The probability that noncompact ranges occur in
field k.

. pk;j: The probability that the jth unique range occurs
in field k.

. p�k;j: The probability that the jth unique noncompact
range occurs in field k.

. mk;j: The number of subranges to exactly implement
the jth range in field k in TCAM.

. !ðpk;j;mk;jÞ: The total number of TCAM rule entries
required to implement all the rules in a TCAM.

. �: The TCAM storage expansion ratio.

Without loss of generality, the compact range in field k

is specified as j ¼ 0. In other words, pk;0 is the probability
that the compact range appears in field k and mk;0 ¼ 1
ðk ¼ 1; 2; . . . ; KÞ. Then, pk;j for the kth field can be
expressed as

pk;j ¼
pkp

�
k;j j ¼ 1; . . . ; Nk

1� pk j ¼ 0:

�
ð1Þ

For simplicity, we assume that the range distributions for
different fields are independent of each other. Then, we have

!ðfpk;j;mk;jgÞ ¼ N�

YK
k¼1

XNk

j¼0

mk;jpk;j

 !
: ð2Þ

Note that this expression applies to a PF table with or
without range encoding. The only difference is that the
mk;j value changes to 1 after the jth range in the field k is
encoded, while pk;j remains unchanged. The TCAM storage
expansion ratio � can be expressed as

� ¼ !ðfpk;jk ;mk;jkgÞ=N�: ð3Þ

Note that � is a function of pk;j, which is further
dependent on pk and p�k;j, as indicated in (1). As shown in

Table 3, pk can take a wide spectrum of values, ranging from
1.4 percent to as high as 43.2 percent. In our numerical
studies, pk is set to 20 percent and 30 percent in two
different cases. On the other hand, p�k;j is highly concen-
trated on a few popular ranges. The statistics in Table 4
indicates that {> 1,023} is the most popular one, appearing
with a frequency of about 88.3 percent. The second popular
one is {109-110}, which appears with a frequency of about
6 percent. This popularity distribution closely follows a
Zipf-like distribution, with z ¼ 3 [3]:

p�k;j ¼ c=�zðjÞ; j ¼ 1; . . . ; Nk; ð4Þ

where z is the Zipf coefficient, �ðjÞ is the rank of the
jth range, and c is a normalization factor. In this
distribution, p�k;j is proportional to the popularity rank of
range j. This distribution is used in our model to
characterize p�k;j. Note that DRES becomes more efficient
as z gets larger because the popular ranges are concentrated
on fewer ranges as z increases.

If the number of unique noncompact ranges is smaller
than the number of ranges that can be encoded, the
performance analysis of DRES is trivial. Hence, we consider
the situation when Nk is large, for example, 102 to 104.
Moreover, we consider a wide range of z values, for
example, from 0.5 to 3.0. To allow one to get a feel of exactly
what these parameters mean in terms of numbers, Fig. 10
plots the frequencies for the top 10 popular noncompact
ranges at z ¼ 0:5; 1:0, and 2:0 and Nk ¼ 100 and 1; 000. First,
one notes that, for z ¼ 2:0, the curves for Nk ¼ 100 and
1; 000 are almost identical and cannot be distinguished from
each other in the plot. This is due to the fact that, as z gets
larger, the few topmost popular ranges become more and
more dominant. As a result, Nk value has less effect on the
relative frequencies of the popular ranges. Second, as z goes
as low as 0.5, the frequencies for even the most popular
range constitute less than 7 percent of the total range
appearance frequencies at both Nk ¼ 100 and 1; 000 and the
frequencies reduce very slowly as the range popularity rank
drops. Therefore, we believe that the parameter range z ¼
0:5 to 3 should be wide enough to cover most of the worst-
case scenarios that may occur.

We again consider a PF table with 104-bit five-tuple rules
and a TCAM slot size of 64 bits. Assume that only the two
ports may have ranges and the range distributions are the

912 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 7, JULY 2008

Fig. 10. The Zipf distribution for the 10 most popular ranges.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 13, 2009 at 03:00 from IEEE Xplore. Restrictions apply.

same for both ports. As one bit is reserved for encoded
range updating, 23 out of the 24 free bits are available for
range encoding, with 12 bits for the source port ranges and
11 for the destination port ranges. mk;j is set to 6 for all of
the ranges, which is the average value found in the four
real-world databases.

Apparently, as the number of unique port numbers
becomes large, the CE scheme becomes unviable due to the
need to accommodate large range tables in TCAM and
potentially oversized encoded rules. Hence, in this study,
we do not compare a hybrid encoding scheme (used in
DRES) with any CE scheme. Instead, in this study, we
compare two hybrid encoding schemes that may be
adopted by DRES, that is, bit-mapping (BM) and P2C. Note
that, in the previous section, the performance of P2C is not
studied because DRES using BM has already given the best
possible performance in terms of TCAM storage efficiency
(one rule per TCAM rule entry). In addition, note that,
although a comprehensive solution for DRES using BM has
been described in this paper, whether or not a comprehen-
sive solution for DRES using P2C can be developed is yet to
be studied. The key challenges to developing such a
solution include the design of a dynamic range selection
heuristic and a lock-free dynamic encoded range update
algorithm. Since the study in this section is only concerned
with the TCAM storage efficiency, we simply assume that a
comprehensive solution for DRES using P2C already exists.

With 23 bits used for range encoding, BM can encode
23 ranges. The number of encoded ranges using P2C is
dependent on the range structure. In the best case, when no
range overlaps with any other range, a total of 212 � 1 ¼
4; 095 ranges in the source port and 211 � 1 ¼ 2; 047 ranges
in the destination port can be encoded. Such a large number
is usually large enough to encode all of the ranges that may
appear in a PF table. In the worst case, when any range can
overlap with any other range, a total of 23 ranges can be
encoded, which is the same as in BM. In the average case,
assume that all of the selected ranges can be put into three
layers such that any range from a given layer does not
overlap with any other range from the same layer and each
layer has the same number of ranges (for more information
on the concept of layer, refer to [18]). Then, a total of ð24 �
1Þ � 3 ¼ 45 ranges in the source port and ð24 � 1Þ � 2þ
23 � 1 ¼ 37 ranges in the destination port can be encoded.
In summary, in our numerical analysis, a total of 23 (12
from the source and 11 from the destination port fields)
ranges are encoded for BM and a total of 82 ranges (45 from
the source and 37 from the destination port fields) are
encoded for P2C.

In our numerical analysis, we neglect the TCAM overhead
for accommodating the two range tables. This approximation
becomes more and more accurate as the rule table size gets
larger. For example, assume that each encoded range
generates one extra subrange that needs to be encoded as
well. Then, a total of ð45þ 37Þ � ð1þ 1Þ � 6 ¼ 984 slots or
492 rule entries are needed for all of the range tables. This
constitutes only 4.9 percent of the total TCAM memory used
to support a rule table with 10,000 rule entries. It further
drops to 0.49 percent if a rule table with 100,000 rule entries is
supported. As the TCAM resource is likely constrained only

when the rule table size becomes moderately large, this

approximation should be a good one in practice.

6.1 Impact of the Zipf Coefficient

We now study the impact of the Zipf coefficient on the

performance of DRES. pk is set at 20 percent for this case

study. Fig. 11 shows the TCAM storage expansion ratios �

without range encoding, encoding by BM, and encoding by

P2C at Nk ¼ 100 and 1; 000, respectively. The storage

efficiency is calculated by (3). Without range encoding,

� ¼ 4. Note that, without range encoding, � is a function of

pk only and is independent of other parameters in our

model. For BM, � is reduced to about 2.9 and 3.6 at z ¼ 0:5,

saving 28 percent and 10 percent of TCAM resources at

Nk ¼ 100 and 1; 000, respectively. About 50 percent and

40 percent of the TCAM resource are saved at z ¼ 1:0 and

Nk ¼ 100 and 1; 000, respectively. � further reduces to less

than 1.5 at z ¼ 1:5 and quickly converges to 1 as z further

increases, independent of Nk. This is because, as z increases,

the top 10 popular ranges become so dominant that the rest

of the ranges do not contribute much to the TCAM

expansion. The storage expansion using P2C is reduced

by up to 40 percent from that of BM. The results indicate

that P2C is much more efficient than BM in general.

6.2 Impact of the Number of Unique Ranges

We set pk ¼ 30%. Fig. 12 plots � without range encoding and

with range encoding at z ¼ 1:0 and 1:5 as a function of Nk.
In Fig. 12, we can see that DRES significantly reduces �

throughout the wide range of Nk, for example, from 102 to

104. Even at z ¼ 1:0 and Nk ¼ 104, the TCAM storage space

is saved by 30 percent for BM and 50 percent for P2C. The

TCAM saving increases fast and becomes less sensitive to

Nk as z further increases. � becomes less than 1.7 for z ¼ 1:5.

P2C gives better performance than BM by further saving

about 30 percent of the TCAM storage space throughout the

parameter range. The above numerical results indicate that

DRES can significantly improve the TCAM storage effi-

ciency in a wide spectrum of parameter ranges.

CHE ET AL.: DRES: DYNAMIC RANGE ENCODING SCHEME FOR TCAM COPROCESSORS 913

Fig. 11. The storage expansion ratio versus the Zipf coefficient.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 13, 2009 at 03:00 from IEEE Xplore. Restrictions apply.

7 CONCLUSIONS AND FUTURE WORK

In this paper, DRES is proposed to improve the TCAM
storage efficiency in support of range matching. As a bottom-
up approach, DRES is designed to solve the range matching
issue for the existing network processors using a TCAM
coprocessor for PF. DRES includes all of the necessary
ingredients for its implementation in a network processor
and its TCAM coprocessor with only a software upgrade.

A salient feature of DRES is its ability to have full control
over the encoded rule size and to exploit the TCAM
structure for maximizing the encoding gains. DRES
provides a range selection algorithm to allow a dynamic
selection of ranges for encoding so that the maximum
encoding gain is maintained whenever the rules are
updated. Moreover, DRES uses a lock-free encoded range
update algorithm that allows encoded ranges to be updated
without impacting the rule matching process. The perfor-
mance on real-world databases shows that DRES can
significantly reduce the TCAM storage expansion from
6.20 to as low as 1.23. Our statistical analysis on a
probabilistic model demonstrates that DRES can signifi-
cantly improve the TCAM storage efficiency in a wide
spectrum of parameter ranges.

To allow for the overall simple design, DRES adopts the
bit-map intersection encoding scheme, which is not the
most effective range encoding scheme. This seems to be
sufficient for today’s PF databases, as we showed in
Section 5. However, as demonstrated in Section 6, using
the P2C encoding scheme rather than the bit-map intersec-
tion encoding scheme in DRES can be much more effective
in terms of the TCAM storage efficiency. Hence, our future
work will focus on developing a comprehensive solution for
DRES using P2C for range encoding. The key challenges in
achieving this goal include the design of an efficient
dynamic range selection heuristic and a lock-free en-
coded-range update algorithm.

ACKNOWLEDGMENT

The authors would like to express their gratitude to Professor
Jonathan Turner and Dr. David Taylor from Washington

University, St. Louis, for kindly sharing their real-world

databases and the related statistics. They also thank the

anonymous reviewers and Professor Matthew Wright for

their constructive comments, which greatly helped to

improve the quality of this paper. This work was partially

supported by the University Grants Committee (UGC) of

Hong Kong under the CERG Grant PolyU 5293/06E and the

China 973 program (2007CB310701).

REFERENCES

[1] “AMCC Ships 10-Gbit/s Processor,” Light Reading, Mar. 2002.
[2] F. Baboesu and G. Varghese, “Scalable Packet Classification,” Proc.

ACM SIGCOMM ’01, pp. 97-108, 2001.
[3] L. Breslau, P. Cao, J. Fan, G. Phillips, and S. Shenker, “Web

Caching and Zipf-Like Distributions: Evidence and Implications,”
Proc. IEEE INFOCOM ’99, pp. 126-134, 1999.

[4] H. Che, Y. Wang, and Z. Wang, “A Rule Grouping Technique for
Weight-Based TCAM Coprocessors,” Proc. 11th Symp. High-
Performance Interconnects, pp. 32-37, Aug. 2003.

[5] Cypress Ayama 10K/20K NSE Series TCAM Products, http://
www.cypress.com, 2008.

[6] A. Feldman and S. Muthukrishnan, “Tradeoffs for Packet
Classification,” Proc. IEEE INFOCOM ’00, pp. 1293-1302, 2000.

[7] A. Gottlieb, “Optimizing Next-Generation Application-Dependent
Packet Classification,” http://www.ardeligroup.com/images/
app_depend_pack_class.pdf, 2007.

[8] P. Gupta and N. McKeown, “Algorithms for Packet Classifica-
tion,” IEEE Network, pp. 24-32, 2001.

[9] P. Gupta and N. McKeown, “Packet Classification on Multiple
Fields,” Proc. ACM SIGCOMM ’99, pp. 147-160, 1999.

[10] P. Gupta and N. McKeown, “Packet Classification Using
Hierarchical Intelligent Cuttings,” Proc. Seventh Symp. High
Performance Interconnects, 1999.

[11] “IDT Introduces IP Coprocessors with Seamless QDR Interface to
Intel’s New Network Processors,” http://www.idt.com/news/
Feb02/02_26_02_1.html, Feb. 2002.

[12] “IDT Samples Industry’s First Network Search Engines with a
Fully Integrated Interface for AMCC Network Processors,”
http://www.idt.com/news/Mar03/03_31_03_1.html, 2007.

[13] M.E. Kounavis, A. Kumar, H. Vin, R. Yavatkar, and A.T.
Campbell, “Directions in Packet Classification for Network
Processors,” Proc. Second Workshop Network Processors, 2003.

[14] T. Lakshman and D. Stiliadis, “High-Speed Policy-Based Packet
Forwarding Using Efficient Multi-Dimensional Range Matching,”
ACM SIGCOMM Computer Comm. Rev., vol. 28, no. 4, pp. 203-214,
Oct. 1998.

[15] K. Lakshminarayanan, A. Rangarajan, and S. Venkatachary,
“Algorithms for Advanced Packet Classification with Ternary
CAMs,” Proc. ACM SIGCOMM, 2005.

[16] H. Liu, “Efficient Mapping of Range Classifier into Ternary-
CAM,” Proc. 10th Symp. High-Performance Interconnects, pp. 95-100,
Aug. 2002.

[17] J. van Lunteren and A.P.J. Engbersen, “Dynamic Multi-Field
Packet Classification,” Proc. IEEE Global Telecomm. Conf., pp. 2215-
2219, Nov. 2002.

[18] J. van Lunteren and A.P.J. Engbersen, “Fast and Scalable Packet
Classification,” IEEE J. Selected Areas in Comm., vol. 21, no. 4,
pp. 560-571, 2003.

[19] E. Spitznagel, D. Taylor, and J. Turner, “Packet Classification
Using Extended TCAMs,” Proc. 11th IEEE Int’l Conf. Network
Protocols, pp. 120-131, Sept. 2003.

[20] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel, “Fast and
Scalable Layer-Four Switching,” Proc. ACM SIGCOMM ’98,
pp. 192-202, 1998.

[21] V. Srinivasan, S. Suri, and M. Waldvogel, “Packet Classification
Using Tuple Space Search,” Proc. ACM SIGCOMM ’99, pp. 135-
146, 1999.

[22] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner, “Scalable
High-Speed Prefix Matching,” ACM Trans. Computer Systems,
vol. 19, no. 4, pp. 440-482, 2001.

[23] Z. Wang, H. Che, M. Kumar, and S. Das, “CoPTUA: Consistent
Policy Table Update Algorithm for TCAM without Locking,” IEEE
Trans. Computers, vol. 53, no. 12, pp. 1602-1614, Dec. 2004.

914 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 7, JULY 2008

Fig. 12. The storage expansion ratio versus the number of unique

ranges in each port field.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 13, 2009 at 03:00 from IEEE Xplore. Restrictions apply.

[24] K. Zheng, C. Hu, H. Lu, and B. Liu, “A TCAM-Based Distributed
Parallel IP Lookup Scheme and Performance Analysis,” IEEE/
ACM Trans. Networking, vol. 14, no. 4, pp. 863-875, Aug. 2006.

[25] K. Zheng, H. Che, Z. Wang, B. Liu, and X. Zhang, “DPPC-RE:
TCAM-Based Distributed Parallel Packet Classification with
Range Encoding,” IEEE Trans. Computers, vol. 55, no. 8, pp. 947-
961, Aug. 2006.

Hao Che received the BS degree from Nanjing
University, China, in 1984, the MS degree in
physics from the University of Texas at Arlington
in 1994, and the PhD degree in electrical
engineering from the University of Texas at
Austin in 1998. From 1998 to 2000, he was an
assistant professor of electrical engineering at
Pennsylvania State University, University Park.
From 2000 to 2002, he was a system architect
with Santera Systems, Plano, Texas. Since

September 2002, he has been an assistant professor of computer
science and engineering in the Department of Science and Computer
Engineering at the University of Texas at Arlington. His research
interests include network architecture and design, network resource
management, multiservice switching architecture, and network proces-
sor design. He is a senior member of the IEEE.

Zhijun Wang received the MS degree in
electrical engineering from Pennsylvania State
University, University Park, in 2001 and the PhD
degree in computer science and engineering
from the University of Texas at Arlington in 2005.
He is currently an assistant professor in the
Department of Computing at Hong Kong Poly-
technic University. His research interests include
high-speed network, network security, traffic
control, data management in mobile networks,

and peer-to-peer networks.

Kai Zheng received the BS degree in electronic
engineering from Beijing University of Posts
and Telecommunications in 2001 and the PhD
degree in computer science from Tsinghua
University in 2006. At that moment, his
research interests included high-performance
IP address lookup, packet classification, and
pattern-matching-related network security is-
sues. He joined the System Research Group
at the IBM China Research Laboratory in July

2006. His current research interests include computer architecture-
related topics such as high-performance deep packet inspection and
emerging network applications on the mass multicore platforms. He is
a member of the IEEE.

Bin Liu received the MS and PhD degrees in
computer science and engineering from North-
western Polytechnical University, Xi’an, China,
in 1988 and 1993, respectively. From 1993 to
1995, he was a postdoctoral research fellow in
the National Key Laboratory, Broadband Switch-
ing Technologies, Beijing University of Post and
Telecommunications. In 1995, he joined the
Department of Computer Science and Technol-
ogy at Tsinghua University as an associate

professor, where he mainly focuses on multimedia networking, including
ATM switching technology and Internet infrastructure and where he has
been a full professor since 1999. He is currently a cochair of the IEEE
International Conference on Communications (ICC) 2008 and the ANI
Symposium. He also serves on the TPC of the IEEE INFOCOM 2008.
He is an associate editor for the Security and Communication Networks
Journal. His research interests include high-performance switches/
routers, network processors, traffic measurement and management,
and high-speed network security. He is a coauthor of the book High-
Performance Switches and Routers and is the holder of 16 patents in
China. He is a member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

CHE ET AL.: DRES: DYNAMIC RANGE ENCODING SCHEME FOR TCAM COPROCESSORS 915

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 13, 2009 at 03:00 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

